Cdmtcs Research Report Series Disjunctive Sequences: an Overview

نویسندگان

  • Cristian S. Calude
  • Lutz Priese
  • Ludwig Staiger
چکیده

Following Jürgensen and Thierrin [21] we say that an infinite sequence is disjunctive if it contains any (finite) word, or, equivalently, if any word appears in the sequence infinitely many times. “Disjunctivity” is a natural qualitative property; it is weaker, than the property of “normality” (introduced by Borel [1]; see, for instance, Kuipers, Niederreiter [24]). The aim of this paper is to survey some basic results on disjunctive sequences and to explore their role in various areas of mathematics (e.g. in automata-theoretic studies of ω-languages or number theory). To achieve our goal we will use various instruments borrowed from topology, measure-theory, probability theory, number theory, automata and formal languages. 1 Notation and Definitions Let IN be the set of positive integers. The number of elements of a finite set S is denoted by card(S). For any finite set (alphabet) X let X∗ denote the free monoid of words (including the empty word 2) over X, and X the set of (infinite) sequences over X. Words on X are denoted by u, v, w; sequences over X are denoted by x,y, z. For W ⊆ X∗ the submonoid generated by W is denoted W ∗, and W ω is the set of infinite sequences formed by concatenating members of W ; finally, let X∞ = X∗∪Xω. A subset W ⊆ X∗ is called a language; an ω-language is a subset of X. For w ∈ X∗ and γ ∈ X∞ the concatenation of w and γ is written wγ. This defines in an obvious way a product WΓ of sets W ⊆ X∗ and Γ ⊆ X∞: WΓ = {wγ | w ∈ W,γ ∈ Γ}. For the sake of brevity we shall write wB, w∗ and w instead of {w}B, {w}∗ and {w}, respectively. By |w| we denote the length of the word w ∈ X∗. The set of all initial words (prefixes) of γ ∈ X∞ is A(γ) = {w ∈ X∗ | ∃γ′ ∈ X∞ wγ′ = γ}. ∗The first author has has been partially supported by Auckland University Research Grant, A18/XXXXX/62090/F3414050. †Computer Science Department, The University of Auckland, Private Bag 92109, Auckland, New Zealand; email: [email protected]. ‡Universität Koblenz-Landau, Fachbereich Informatik, Rheinau 1, D-56075 Koblenz, Germany, email: [email protected]. §Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik, Kurt-Mothes-Str. 1, D-06120 Halle (Saale), Germany, email: [email protected]. The set of all subwords (factors, infixes) of γ ∈ X∞ is T(γ) = {w ∈ X∗ | ∃v ∈ X∗ ∃γ′ ∈ X∞ vwγ′ = γ}, and the set of all suffixes of γ ∈ X∞ is S(γ) = {γ′ ∈ X∞ | ∃w ∈ X∗, wγ′ = γ}. For B ⊆ X∞ put

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CDMTCS Research Report Series Generalisations of Disjunctive Sequences

The present paper proposes a generalisation of the notion of disjunctive (or rich) sequence, that is, of an infinite sequence of letters having each finite sequence as a subword. Our aim is to give a reasonable notion of disjunc-tiveness relative to a given set of sequences F. We show that a definition like " every subword which occurs at infinitely many different positions in sequences in F ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997